
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

.r~1* I ho p respons, Inudin Ihe UU tot ,evi.ng Injctm. i~m*chl@ ea=ll@ dla soiwo. gI*heutg

lo Won I foMf. Send Cofnfwnb rgaFdna INs burden tmb60 l ofy a dhefr oaed GO " colm wn of Ikom"lion.
a Saftim. Dlcore te flormnobn Opwbm nd ItRemo. 121S Jefflo OmVAi Rt.. Subs 1204. ArbVnI.

i Redulo Prosd (07N4-I1). WW'glon. C 20M.

AD-A227 159 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1990 Special Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

The ISIS Project: Real Experience with a Fault

Tolerant Programming System NAG2-593

6. AUTHOR(S)
Kenneth Birman, Robert Cooper

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Kenneth P. Birman, Associate Professor 
REPORTNUMBER

Department of Computer Science, Cornell University 90-1138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DARPA/ISTO

11. SUPPLEMENTARY NOTES

12a. DISTRIRUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED 'oo-

13. ABSTRACT (Maximum 200 words)

No abstract given.

DTIC
SELEC

T ED

14. SUBJECT TERMS 1S. NUMBER OF PAGES

6
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Ui;'ASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7640,01 .2llO-5SO0 S gd Fom M (RW. 2.0"

Pewdum4 bp A/SI SWl. S-10
PNWW- VM9WW1



The ISIS Project:
Real Experience with a Fault Tolerant

Programming System

Kenneth Birman
Robert Cooper*

TR 90-1138
July 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency

(DoD) under DARPANASA subcontract NAG 2-593.



The ISIS Project: Real experience with a fault tolerant
programming system

Kenneth Birman Robert Cooper'
ken(Ocs.cornell.edu rcbc(Dcs.cornell.edu

Department of Computer Science, Cornell University
Ithaca NY 14853, USA

The ISIS project has developed a distributed pro- ABCAST has no non-blocking implementations. In
gramming toolkit42,3] awnd a collection of higher level the early versions of ISIS (where communication was
applications based on these tools. ISIS is now in use quite slow), this distinction was huge. Today. ISIS
at more than 300 locations world-wide. Here, we dis- performance has improved to the limits imposed b
cuss the lessons (and surprises) gained from this ex- the underlying message transport facilities, yet CB-
perience with the real world. CAST remains 3 to 5 times faster than ABCAST in

all situations. More to the point, applications that
invoke ABCAST are delayed for a significant amount

been successful in of time-long enough to cause a graphics applica-
What has betion to stutter visibly, and limiting CPU utilization of

ISIS? multicast-intensive programs to 30-40%. Jointly, we
feel that these considerations continue to justify the
code and complexity needed to support CBCAST.

ISIS differs from other process-group-based systems
because it integrates group membership changes with
communication, and because of the multicast commu-
nication primitives we call CBCAST and ABCAST. W hat lessons did we learn?

k)

Virtual synchrony is a good model. Virtual syn- Users want interworkmg. We have always adver-
chrony underlies those aspects of ISIS that have been
most successful. The approach makes it possible for td Ifam e ntew y t dsn an
a process to infer the state and actions of remote pro- program reliable distributed systems. But many of
cesses using local state information and events that our most enthusiastic users chose to apply ISIS to

have been locally observed. Our experiences con- existing programs, or to use it on only part of their

firm that using this property, one can often arrive application, using existing standard network proto-

at elegant, efficient solutions to problems that would cols for other aspects. One implication is that ISIS

be difficult to formulate--and extremely complex to must co-exist with old code and other sorts of net-
implement--on a bare message-pasing system. working services, a consideration that has forced us

i bs . to re-engineer parts of the system. A second impli-

CBCAST is important but adds complexity' cation is that for many users, adherence to standard
We originally decided to support a causally-ordered solutions is even more important than functionality,CBCAST primitive in addition to the better-known even reliability! A prime example is that most ISIStotally-ordered ABCAST primitive because of perfor- users insist on using relatively unreliable services suchmance. CBCAST As a one-phase protocol; when used as the Network File System (NFS) and Yellow Pages

asynchronously the initiator is not required to block (YP), even though theme can substantially degrade
until remote destinations have received the message.

*This work is supported by the Defense Advanced Re- The interest in ISIS for interworking has pushed us to
search Projects Agency (DoD) under DARPA/NASA subcon- port the system to a wide range of hardware and to
tract NAG2-593.

I



offer interfaces from a variety of languages, notably object and a given process may have several obje(,.

Fortran and Lisp. Each object's implementation, including communi-
cation and concurrency, can be developed indepen-

On the other hand the existence of appropriate stan- dently. Because ISIS guarantees proper multicast or-
dards, namely th. kRPA protocol suite and Unix, dering when groups overlap, there is high confidence
has allowed ISIS to be made available on and among that objects will behave correctly when combined. In
a wide range of manufacturers' equipment through an unordered multicast system such as V, combining
the efforts of our research group. In contrast, port- two previously disjoint process groups would requir,-
ing a system like ISIS to a non-Unix environment can extensive algorithm redesign, especially with respect
be undertaken only as a fully funded commercial op- to race conditions and communication.
eration. The ability to use ISIS without moving to
a new programming language, operating system and ISIS could provide more support for this program-
network protocol suite was crucial for many users. ming style. For instance, ISIS would benefit from an

interface definition language that reinforced the no-
Performance demands are modest. Performance tion that a group implements a distributed abstract
of the early versions of ISIS was poor, and we ex- data type. Also the C++ interface to ISIS could make
pected a great deal of negative feedback in this area. much more use of the object-oriented features of that
This led to a major effort to improve the perfor- language.
mance of multicasting in the most common modes,
which has been successful. However, our experience Small groups work best. Some of our papers on
now suggests that rather few ISIS applications are in ISIS assume that all members of each group will co-
any way limited by multicast performance. For most operate to manage the group state or perform oper-
people reliability and ease of programming really are ations on behalf of clients. This is an appropriate
more important than pure speed. model for achieving fault tolerance with small groups

of 3 or 4 processes. However, as applications grow
We have also found that in cases where speed is large, ISIS users have been forced to employ ad-hoc
important, general protocols will usually be outper- hierarchical structuring mechanisms to circumvent
formed by specialized solutions tuned for the partic- this limitation. A large group, encompassing per-
ular application or hardware environment. A good haps hundreds of processes, is subdivided into many
example of this is in stock and bond trading room small groups. The small groups provide the reliabil-
systems where fast response and large scale are re- ity; the large group handles scale. There is a sig-
quired of a multicast protocol, but where there is nificant amount of bookkeeping required to manage
a simple communication structure. In this simple such a hierarchical group. This has motivated us to
structure many of the more troublesome failure and extend ISIS with hierarchical group primitives, and
concurrency conditions cannot occur, and the costs to provide a large-group multicast for the few situa-
incurred to avoid them can be saved. tions when all the members of a large group need to

Thus the key to satisfying user demands for perfor- be contacted.

mance consisted not only of speeding up the basic Users mean something different by "large
ISIS protocols, but of providing an interface by which scale". We expected that many ISIS users would
users could plug in their own multicast protocols, have large networks, and this is indeed the case. How-
Redesigning ISIS so that this interface was simple ever, where we assumed that ISIS itself would ulti-
enough for practical use, while still maintaining the mately have to scale to large environments, our users
reliability and consistency semantics of ISIS has been needed something entirely different. Large systems
challenging. are more heterogeneous than we expected, and ISIS

ISIS programs use lots of groups. Although ISIS to primarily useful in building highly robust central-
ized services. These centralized services are in factplaces no limits on the number of process groups to distributed over a modest number of machines for

which a process may belong, we were surprised to re- relibtyd erfo e. Teeer have thu
aliz tht mny pplcatonsactall us lage um-reliability and performance. Theme users have thus

alize that many applications actually use large num- been far more interested in mechanisms for connect-
bers of process groups. The reason is that process ing large numbers of client workstations to a much
groups with well defined semantics are a very con- smaller number of centralized sites running ISIS than
venient distributed programming abstraction. Many in actually running ISIS directly on thousands of
users have adopted an objected-oriented program- client machines.
ming style in which a group implements a distributed

2



W hat did we learn from imple- to arbitrary lists of groups and individual process, -.

menting ISIS? because its effect can be achieved by the subset mul-
ticast feature. We will also provide better high-levei.
problem-oriented tools that choose the right primiti,.

Implementing ISIS on Unix was a good idea. for the user.

We resisted the temptation to implement a special
purpose operating system kernel for ISIS, despite the The ISIS implementation has proved reliable.
performance penalty that decision entailed. This There is always concern that a system such as ISIS
made it easy for others to benefit from our work, that enforces consistency throughout a local network

and provide us with valuable feedback. With our may actually reduce reliability. There are two argu-

experience implementing ISIS we now understand ments at play here. First, that enforcing consistency
which parts of ISIS should be "kernelized" to im- whenever a single failure occurs requires all opera-
prove performance. These include the failure de- tional sites to participate in some agreement protocol.

and second, that the complexity of ISIS itself may betection m echanism , the default m ultica s* transport a s u c f u rl a ii y
protocol, and certain aspects of the CBC..3T imple- a source of unreliability.
mentation. Most of the ABCAST implementation,
and all of the higher level ISIS tools benefit less from The first argument overstates the problem, because
inclusion in the kernel. Efficient sharing of message the ISIS recovery protocol typically involves only
buffers should be directly supported by the kernel, those sites interested in communicating with a failedsite. Those sites, however, must use some timeout

Modular operating system structures, which allow us interval to determine that a site has failed. Choos-

to place our code in the kernel in a straightforward ing that timeout is a tradeoff between achieving quick

manner, are most attractive to us. We are investigat- failure recovery, and incorrectly deciding that a site

ing implementing ISIS on Chorusfl]. that is merely being slow has in fact failed. ISIS
allows this timeout parameter to be tuned to a par-

ISIS should have a modular structure. Contin- ticular environment.

uing this theme, ISIS itself should be structured in
terms of separate modules, which can be composed The second argument is a legitimate concern but one
in multiple ways to give differing semantics depend- that has not proved to be a problem in practice. ISIS
ing on the needs of the application. For example, appears to be as reliable as any compiler, database,

one might want to add a real-time communication or operating system. And in fact most problems users

protocol to ISIS that sacrifices virtual synchrony for experience are due to unreliable network naming ser-

timely delivery. Currently, we tend to extend the ex- vices, compiler bugs and operating system bugs.

isting, monolithic system with interfaces supporting
such user-specified mechanisms, but as the system
grows larger this has grown harder to do. Who uses ISIS?

ISIS semantics need simplifying. The detailed
semantics of process groups, particularly for commu- When our project began, we could only speculate on
nication, have been extended several times, often in the sorts of applications that really need an ISIS-like
response to feedback from usrs. For example, the technology. With a community of 300 users, we have
hierarchical group mechanisms mimic the behavior a better idea of the market for this type of technology.
of a single large group but allocate small subgroups A substantial percentage of our users appear to have
to perform each operation, and the basic broadcast an interest in the technology primarily for evaluation
interface now supports a subset muticast. However or for instructional use. Excluding this group, our
these enhancements have complicated the system's active current users include the following:
implementation and the added complexity of the ISIS C-
interface may result in less reliable programming by Systems integration projects. A number of ISIS
our users. Where the user has a choice of primitives users are building systems to fault-tolerantly monitor
with differing semantics, they may choose the wrong and control an application built using older technol-
one for their purpose. Our next changes to the sys- ogy. A typical user of this sort will have modified a
tem will be to unify and thereby simplify some of batch application to run continuously in a networked -

the multicast and group semantics. We have already environment, using files and pipes to interconnect the 'odes
removed one feature, that of permitting ABCASTs 'or

III EAl

3. , r!!a._ . ..



software, and perhaps exploiting simple forms of par- Alex Siegel is developing a distributed file -
allelism such as the ability to run several sequential tem. Deceit[5], that provides file replication, fault-
programs concurrently. Use of ISIS is typically con- tolerance, and mechanisms for integrating large num-
fined to the supervisory program. The need for fault bers of separate file servers into a coherent large-scale
tolerance is primarily to achieve the kind of reliabijity file system. He uses ISIS within Deceit to keep track
and consistency that users came to expect on a single of replicated file state, but for compatibility uses ani
mainframe computer. Users do not like the inconsis- NFS-based protocol to communicate with disk servers
tencies that arise in networks of workstations, and clients and to transfer whole files when a server

recovers from failure.
Financial and brokerage firms. These groups are
typically attracted by the fault-tolerance aspects of ISIS is used by computer graphics researchers at Cor-
ISIS and its multicasting facilities. They tend to favor nell to execute large parallel computations on a col-
ISIS over alternatives because it is a general-purpose lection of workstations. By using ISIS this group can
system and because source-code is available. Several concentrate on their graphics algorithms, and avoid
such groups evaluated ISIS V1.0 and concluded that the work of maintaining their own library of commu-
the multicasting mechanisms were unacceptably slow; nication primitives based on Unix sockets. The per-
the easily extensible, faster protocols in ISIS V2.0 formance of ISIS is relatively more important than
should allay their concerns. Financial systems are absolute reliability in this application.
typically large, heterogeneous UNIX environments,
with a relatively low load of general purpose comput-
ing and a high volume of quote-dissemination (mul- Conclusions
ticast) activity.

Factory automation efforts. Several ISIS users If ISIS VI.0 was an immature system aimed, fortu-
are developing automation software for factory floor itously, at what proved to be a large potential user
environments. The reliability requirements in this community, ISIS V2.0 represents a more considered
environment are obvious. This appears to be one of attempt to adapt our system to the real needs of its
the few settings where users have been drawn to ISIS existing users. Looking to the future, it is unclear to
primarily for its computing model, us where this path will lead, but our hope is that ma-

Telecommunication switching systems. Sev- jot changes to the ISIS architecture will no longer be

eral major telecommunication companies are using needed, permitting our user community to view ISIS
ISIS to prototype control software for next-generation as less of a moving target, and our research effort toISIS ext-enertion shift its attention to developing distributed applica-
switching and control systems. Of course, the current

implementation of ISIS is not well-tuned for this kind tions. We view the ISIS work as a stepping stone to

of extremely demanding embedded application, but a new and exciting class of robust, massively concur-

ISIS does provide an excellent prototyping environ- rent, and tightly integrated distributed systems. It

ment. Later an ISIS-derived technology oriented to now seems clear that there is a substantial demand

real-time environments could be used in the produc- for technologies in this area, and that some very in-

tion system. teresting systems could be built. Meanwhile, several
research projects are exploring support for facilities

Distributed applications at Cormel. At Cornell, like the ones in ISIS. It seems only a matter of time

as elsewhere, many users are working with ISIS as a before technologies such as ours are widely accepted.
base technology for building other sorts of applica- standardized, and widely available.
tions. Within our department, Keith Marzullo and
Mark Wood are developing the MzTA system[4] for
monitoring distributed sensors and triggering actions Acknowledgements
as needed. By using ISIS they are able to focus on
the difficult issues of implementing the sensor and
actuator database and query system, rather than re- The ISIS system architecture has evolved in response
implement many of the ISIS mechanisms. Robbert to pressures from our users and to accommodate new
Van Renesse is building a still higher-level system, for ideas by group members. While this is too lengthy
graphically monitoring a distributed application and a list to include here, we acknowledge with gratitude
specifying control actions through a powerful control the many contributions that these individuals have
language and user interface, made to the system.

4



4

References

[1] F. Armand. M. Gien, F. Herrmann, and
NI. Rozier. Revolution 89 or Distributing UNIX
brings it bark to its original virtues. Technical
Report CS/TR-89-36.1. Chorus syst~mes, 6 Av-
enue Gustave Eiffel, F-78182, Saint-Quentin-en-
Yvelines, France. Aug. 1989.

(2] K. Birman and T. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of
the Eleventh ACM Symposium on Operating Sys-
tern Principles, pages 123-138. ACM Press, New
York, NY 10036, Order No. 534870, Nov. 1987.

[3] K. P. Birman, R. Cooper, T. A.
Joseph, K. Marzullo, M. Makpangou, K. Kane,
F. Schmuck, and M. Wood. The ISIS System
Manual, Version 2.0. Department of Computer
Science, Cornell University, Upson Hall, Ithaca,
NY 14853, Mar. 1990.

[4] K. Marzullo. Implementing fault-tolerant sen-
sors. Technical Report TR 89-997, Department
of Computer Science, Cornell University, Upson
Hall. Ithaca, NY 14853, May 1989.

[5] A. Siegel, K. Birman, and K. Marzullo. Deceit: A
flexible distributed file system. Technical Report
TR 89-1042, Department of Computer Science,
Cornell University, Upson Hall, Ithaca, NY 14853,
Nov. 1990.

5


